MATH 3060 Tutorial 1

Chan Ki Fung

September 28, 2021

- 1. Determine whether the followings are true or not.
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges absolutely.
 - (c) If f, g are functions integrable on [0, 1], then so is the product fg.
 - (d) $\sum_{n=1}^{\infty} (x^{n-1} x^n)$ converges pointwise on [0, 1].
 - (e) $\sum_{n=1}^{\infty} (x^{n-1} x^n)$ converges uniformly on [0, 1].
 - (f) If $\sum_n s_n(x)$ converges uniformly and absolutely, and each $s_n(x)$ is differentiable, then $\sum_n s'_n(x)$ converges uniformly and absolutely.
 - (g) If $\sum_{n} s'_{n}(x)$ converges uniformly and absolutely, then $\sum_{n} s_{n}(x)$ converges uniformly and absolutely. Moreover

$$\sum_{n} s'_{n}(x) = \left(\sum_{n} s_{n}(x)\right)'.$$

(h) If $\sum_{n} s_n(x)$ converges uniformly and absolutely, and each $|s_n(x)|$ is integrable on [0, 1], then $\sum_{n} \int_0^x s_n(t) dt$ converges uniformly and absolutely. Moreover,

$$\sum_{n} \int_0^x s_n(t) dt = \int_0^x \sum_n s_n(t) dt.$$

- (i) If $s(x) = \sum s_n(x)$ converges uniformly on [0, 1], and each $s_n(x)$ is continuous on [0, 1], then s(x) is uniformly continuous on [0, 1].
- (j) If f(x) is a 2π periodic function, then f(x) and f(x-c) have the same Fourier series for any real constant c.

ANS: T,F,T,T,F,F,F,T,T,F

- 2. (M-test) If $\sum_{n} M_n < \infty$ and $|s_n(x)| \le M_n$ for all n and x. Then $\sum_{n} s_n(x)$ converges uniformly and absolutely.
- 3. Find the Fourier series of the function $f(x) = |x|, x \in [-\pi, \pi]$

- 4. Let f be a 2π periodic odd function, with $f(x) = x(\pi x)$ for $x \in [0, \pi]$. Find the Fourier seriese of f.
- 5. Let f be a 2π -periodic function which is infinitely many times differentiable on \mathbb{R} . Show that its Fourier coefficients are of order $o(1/n^k)$ for any $k \geq 1.$

Hint: What is the relation between $c_n(f)$ and $c_n(f')$?

6. Let f, g be continuous 2π periodic, define h by

$$h(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y)g(y)dy.$$

Show that $c_n(h) = c_n(f)c_n(g)$. Hint: You may write $e^{-inx} = e^{-in(x-y)}e^{-iny}$ to apply Fubini theorem.